Drifting sub-pulse analysis using the two-dimensional Fourier transform

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drifting sub-pulse analysis using the two-dimensional Fourier transform

The basic form of drifting sub-pulses is that of a periodicity whose phase depends (approximately linearly) on both pulse longitude and pulse number. As such, we argue that the two-dimensional Fourier transform of the longitude-time data (called the Two-Dimensional Fluctuation Spectrum; 2DFS) presents an ideal basis for studies of this phenomenon. We examine the 2DFS of a pulsar signal synthesi...

متن کامل

Nonseparable two-dimensional fractional fourier transform.

Previous generalizations of the fractional Fourier transform to two dimensions assumed separable kernels. We present a nonseparable definition for the two-dimensional fractional Fourier transform that includes the separable definition as a special case. Its digital and optical implementations are presented. The usefulness of the nonseparable transform is justified with an image-restoration exam...

متن کامل

Two dimensional discrete fractional Fourier transform

Fractional Fourier transform (FRFT) performs a rotation of signals in the time—frequency plane, and it has many theories and applications in time-varying signal analysis. Because of the importance of fractional Fourier transform, the implementation of discrete fractional Fourier transform will be an important issue. Recently, a discrete fractional Fourier transform (DFRFT) with discrete Hermite...

متن کامل

Two-Dimensional Clifford Windowed Fourier Transform

Recently several generalizations to higher dimension of the classical Fourier transform (FT) using Clifford geometric algebra have been introduced, including the two-dimensional (2D) Clifford Fourier transform (CFT). Based on the 2D CFT, we establish the two-dimensional Clifford windowed Fourier transform (CWFT). Using the spectral representation of the CFT, we derive several important properti...

متن کامل

Two-dimensional affine generalized fractional Fourier transform

As the one-dimensional (1-D) Fourier transform can be extended into the 1-D fractional Fourier transform (FRFT), we can also generalize the two-dimensional (2-D) Fourier transform. Sahin et al. have generalized the 2-D Fourier transform into the 2-D separable FRFT (which replaces each variable 1-D Fourier transform by the 1-D FRFT, respectively) and 2D separable canonical transform (further rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Astronomy & Astrophysics

سال: 2002

ISSN: 0004-6361,1432-0746

DOI: 10.1051/0004-6361:20021067